

3

SSCN2222AGS8

High Frequency High Gain NPN Power BJT

> Features

VCB	VCE	VEB	IC	
75V	40V	6V	600mA	

> Description

This product is general usage and suitable for many different applications. It can be used for medium power amplifiers and switches requiring collector currents up to 600 mA.

1 - Base 2 - Emitter

SOT-523

Pin configuration

 \triangleright

> Applications

- Low current and high precision circuits such preamplifiers, oscillators, current mirror configuration
- Medium power amplification and switching

> Ordering Information

Device	Package	Shipping	
SSCN2222AGS8	SOT-523	3000/Reel	

SSCN2222AGS8

> Absolute Maximum Ratings($T_A=25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	75	V
Collector- Emitter Voltage	Vceo	40	V
Emitter-Base Voltage	Vebo	6	V
Collector Current-Continuous	lc	600	mA
Collector Power Dissipation	Pc	150	mW
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C

> Electrical Characteristics ($T_A=25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	I _C = 10uA,I _E =0 75				V
Collector-emitter Breakdown Voltage	BV _{CEO}	I _C =10mA,I _B =0 40				V
Emitter -Base Breakdown Voltage	BV _{EBO}	I _E =10uA,I _C =0	c=0 6			V
Collector Cutoff Current	ICEX	V _{CE} =60V, V _{BE} =3V			10	nA
	h _{FE1}	V _{CE} =10V,I _C =150mA	100		300	
	h _{FE2}	V _{CE} =10V,I _C =0.1mA	35			
DC Current Gain	h _{FE3}	V _{CE} =10V,I _C = 1mA	50			
	h _{FE4}	V _{CE} =10V,I _C = 10mA	75			
	h _{FE5}	V _{CE} =10V,I _C = 500mA	40			
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C =500mA,I _B =50mA			1.0	V
Base-Emitter Saturation Voltage	V _{BE(sat)}	Ic=500mA,I _B =50mA			2.0	V
Transition frequency	f⊤	V _{CE} =20V,Ic=20mA f=100MHz	300			MHz
Delay Time	t _d	V _{CC} =30V,I _C =150mA, I _{B1} =15mA			10	ns
Rise Time	tr	V _{cc} =30V,I _c =150mA, I _{B1} =15mA			25	ns
Storage Time	ts	V _{CC} =30V,I _C =150mA,			225	ns
3 • • • • • •		I _{B1} = I _{B2} =15mA				
 Fall Time	t _f	V _{CC} =30V,I _C =150mA,	/ _{cc} =30V,I _c =150mA,		60	ns
	4	I _{B1} = I _{B2} =15mA			00	

1

0.8

0.6

0.4

0.2

0

1

Base-Emitter Saturation

Voltage_V_{BEsat}(V)

SSCN2222AGS8

> Typical Performance Characteristics ($T_A=25^{\circ}C$ unless otherwise noted)

Collector Current vs. Base-Emitter Voltage

T_=25°C

T_A=100°C

100

β=10

DC Current Gain vs. Collector Current

V_{BE(sat)} vs. Collector Current

Collector Current_Ic(mA)

10

V_{CE(sat)} vs. Collector Current

Transition Frequency vs. Collector Current

SSCN2222AGS8

> Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	0.700	0.900	0.028	0.035	
A1	0.000	0.100	0.000	0.004	
A2	0.700	0.800	0.028	0.031	
b1	0.150	0.250	0.006	0.010	
b2	0.250	0.350	0.010	0.014	
С	0.100	0.200	0.004	0.008	
D	1.500	1.700	0.059	0.067	
E	0.700	0.900	0.028	0.035	
E1	1.450	1.750	0.057	0.069	
е	0.500 TYP.		0.020 TYP.		
e1	0.900	1.100	0.035	0.043	
L	0.400 REF.		0.016 REF.		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	

> SOT-523 Suggested Pad Layout

Note:

1.Controlling dimension:in millimeters.

2.General tolerance:±0.05mm.

3. The pad layout is for reference purposes only.

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G,. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.